Days=[1,2,3,4,5,6,7,8]
Speed=[60, 62, 61, 58, 56, 57, 46, 63]
plt.plot(Days,Speed)
plt.xlabel('days')
plt.ylabel('car speed')
plt.title('Car Speed Measurement')
plt.show()
OUTPUT :
2. Now to above car data apply some string formats like line style example green dotted line, marker shape like +, change markersize, markerface color etc.
#line style green dotted line
Days=[1,2,3,4,5,6,7,8]
Speed=[60, 62, 61, 58, 56, 57, 46, 63]
plt.plot(Days,Speed,"g:")
plt.xlabel('days')
plt.ylabel('car speed')
plt.title('Car Speed Measurement')
plt.show()
OUTPUT :
Days=[1,2,3,4,5,6,7,8]
Speed=[60, 62, 61, 58, 56, 57, 46, 63]
plt.plot(Days,Speed,"g:",marker='+')
plt.xlabel('days')
plt.ylabel('car speed')
plt.title('Car Speed Measurement')
plt.show()
OUTPUT:
#change markersize
Days=[1,2,3,4,5,6,7,8]
Speed=[60, 62, 61, 58, 56, 57, 46, 63]
plt.plot(Days,Speed,"c-",markersize=30,marker='*')
plt.xlabel('days')
plt.ylabel('car speed')
plt.title('Car Speed Measurement')
plt.show()
OUTPUT:
#marker face color
Days=[1,2,3,4,5,6,7,8]
Speed=[60, 62, 61, 58, 56, 57, 46, 63]
plt.plot(Days,Speed,"y-",marker='o',markerfacecolor='red')
plt.xlabel('days')
plt.ylabel('car speed')
plt.title('Car Speed Measurement')
plt.show()
OUTPUT:
3. Plot Axes Labels, Chart title, Legend, Grid in Car minimum, Maximum and average speed in 8 days.
days=[1,2,3,4,5,6,7,8]
max_speed=[80,91,92,88,77,79,76,75]
min_speed=[42,43,40,42,33,36,34,35]
avg_speed=[46,58,57,56,40,42,41,36]
days=[1,2,3,4,5,6,7,8]
max_speed=[80,91,92,88,77,79,76,75]
min_speed=[42,43,40,42,33,36,34,35]
avg_speed=[46,58,57,56,40,42,41,36]
plt.title('Max Avg Min Speeds of Car')
plt.plot(days,max_speed,color="red",label="Maximum Speed")
plt.plot(days,min_speed,color="blue",label="Minimum Speed")
plt.plot(days,avg_speed,color="yellow",label="Average Speed")
plt.xlabel('days')
plt.ylabel('speed')
plt.grid()
plt.legend()
plt.show()
OUTPUT:
4. Plotting a basic sine graph by adding more features. Adding Multiple plots by Superimposition like cosine wave.
import numpy as np
import matplotlib.pyplot as plot
x = np.arange(0, 10, 0.1)
a = np.sin(x)
b = np.cos(x)
plt.plot(x,a,color='cyan',label='sin wave')
plt.plot(x,b,color='orange',label='cos wave')
plt.title('Sine & Cosine waves')
plt.legend()
plt.grid()
plt.show()
OUTPUT:
5. Plot Simple bar chart showing popularity of Programming Languages.
Languages =['Python', 'SQL', 'Java', 'C++', 'JavaScript']
Popularity = [56, 39, 34, 34, 29]
Security = [44 ,36 ,55, 50, 42]
Plot Multiple Bars showing Popularity and Security of major Programming Languages. Also Create Horizontal bar chart using barh function.
Languages =['Python', 'SQL', 'Java', 'C++', 'JavaScript']
Popularity = [56, 39, 34, 34, 29]
Security = [44 ,36 ,55, 50, 42]
plt.bar(Languages,Popularity,color="blue",label='Popularity')
plt.bar(Languages,Security,color="dimgray",label='Security')
plt.legend()
plt.show()
OUTPUT:
plt.barh(Languages,Popularity,color="blue",label='Popularity',height=0.4)
plt.barh(Languages,Security,color="dimgray",label='Security',height=0.5)
plt.legend()
OUTPUT:
6. Plot Histogram, We have a sample data of Students marks of various Students, we will try to plot number of Students by marks range and try to figure out how many Students are average, below-average and Excellent.
Marks = [ 61,86,42,46,73,95,65,78,53,92,55,69,70,49,72,86,64]
Histogram showing Below Average, Average and Execellent distribution
40-60: Below Average
60-80: Average
80-100: Excellent
Marks = [61,86,42,46,73,95,65,78,53,92,55,69,70,49,72,86,64]
print('Below Average')
for i in Marks:
if i>=40 and i<60:
print(i)
print('Average')
for i in Marks:
if i>=60 and i<=80:
print(i)
print('Excellent')
for i in Marks:
if i>=80 and i<=100:
print(i)
plt.hist(Marks)
plt.show()
OUTPUT:
Below Average
42
46
53
55
49
Average
61
73
65
78
69
70
72
64
Excellent
86
95
92
86
7. Titanic Data Set Download Data
Load the data file
(i) Create a pie chart presenting the male/female proportion
(ii) Create a scatterplot with the Fare paid and the Age, differ the plot color by gender
df=pd.read_csv("Titanic.csv")
df.head()
sex = df.groupby(["Sex"])["Survived"].count()
print(sex)
plt.pie(sex)
plt.legend(['female','male'])
plt.show()
OUTPUT:
Sex
female 462
male 851
Name: Survived, dtype: int64
Comments
Post a Comment